Unit 2 – Linear Motion and Force

Mathematical representations and relationships

• v = u + at, $s = ut + \frac{1}{2}at^2$, $v^2 = u^2 + 2as$

s= displacement, t = time interval, u= initial velocity, v= final velocity, a= acceleration

•
$$a = \frac{F}{m}$$

a = acceleration, F = force, m = mass

- $W=\Delta E$; where the applied force is in the same direction as the displacement, W = Fs,
- W = work, F = force, s = displacement, ΔE = change in energy
- $P = mv, \Delta p = F\Delta t$

p = momentum, v = velocity, m = mass, F = force, Δp = change in momentum,

 Δt = time interval over which force F acts

• $E_k = \frac{1}{2}mv^2$

 E_k = kinetic energy, m = mass, v = speed

• $\Delta E_p = mg\Delta h$

 ΔE_p = change in potential energy, m = mass, g = acceleration due to gravity, Δh = change in vertical distance

• Σmv before = Σmv after

 Σmv before = vector sum of the momenta of all particles before the collision, Σmv after = vector sum of the momenta of all particles after the collision

• For elastic collisions: $\Sigma_2^1 m v^2$ before = $\Sigma_2^1 m v^2$ after

 $\Sigma_2^1 mv^2$ before = sum of the kinetic energies before the collision, $\Sigma_2^1 mv^2$ after = sum of the kinetic energies after the collision

The above formulae can also be found on the Australian Curriculum website for Senior Physics Unit 2 (Yr 11 and 12) URL: <u>http://www.australiancurriculum.edu.au/SeniorSecondary/Science/Physics/Curriculum/SeniorSecondary#page=2</u> Re-written for educational printing purposes only.